Cell Cycle-Dependent Expression Dynamics of G1/S Specific Cyclin, Cellulose Synthase and Cellulase in the Dinoflagellate Prorocentrum donghaiense

نویسندگان

  • Xinguo Shi
  • Minglei Ma
  • Senjie Lin
چکیده

Dinoflagellates undergo a typical eukaryotic cell cycle consisting of G1, S, G2, and M phases and some of the typical cell cycle related genes have been computationally identified. However, very few of these genes have been experimentally linked to the cell cycle phases. Besides, although thecate dinoflagellates are known to possess theca composed of cellulose, information on cellulose synthesis and degradation associated with the cell cycle is also limited. In this study, we isolated G1/S cyclin, cellulose synthase and cellulase encoding genes in dinoflagellate Prorocentrum donghaiense. Further, using reverse transcription quantitative PCR (RT-qPCR), we characterized the expression profiles of the three genes throughout the cell cycle. All three showed clear expression dynamics throughout the cell cycle, with fold changes of 26, 2.4 and 9.3 for G1/S cyclin, cellulose synthase and cellulase gene, respectively. The transcript abundance of G1/S cyclin increased in late G1 phase and dropped in early S phase, indicating that this protein is involved in the G1/S transition. Throughout the cell cycle, the average transcript level of cellulose synthase was 4.5-fold higher than that of cellulase. Cellulose synthase and cellulase gene expressions showed peak transcript abundances at middle G1 phase and G2M phase, respectively, indicating the respective roles of these enzymes in the growth of newly divided cells and in cytokinesis. Our results suggest that G1/S cyclin, cellulase, and cellulose synthase genes associated with G1/S transition, G2M, and G1 phases of the cell cycle and are candidates of biomarkers for assessing growth status of P. donghaiense.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tandem Repeats, High Copy Number and Remarkable Diel Expression Rhythm of Form II RuBisCO in Prorocentrum donghaiense (Dinophyceae)

Gene structure and expression regulation of form II RuBisCO (rbcII) in dinoflagellates are still poorly understood. Here we isolated this gene (Pdrbc) and investigated its diel expression pattern in a harmful algal bloom forming dinoflagellate Prorocentrum donghaiense. We obtained cDNA sequences with triple tandem repeats of the coding unit (CU); the 5' region has the sequence of a typical dino...

متن کامل

Quantitative Proteomic Analysis of Cell Cycle of the Dinoflagellate Prorocentrum donghaiense (Dinophyceae)

Dinoflagellates are the major causative agents of harmful algal blooms in the coastal zone, which has resulted in adverse effects on the marine ecosystem and public health, and has become a global concern. Knowledge of cell cycle regulation in proliferating cells is essential for understanding bloom dynamics, and so this study compared the protein profiles of Prorocentrum donghaiense at differe...

متن کامل

The Activity of a Wall-Bound Cellulase Is Required for and Is Coupled to Cell Cycle Progression in the Dinoflagellate Crypthecodinium cohnii C W OA

Cellulose synthesis, but not its degradation, is generally thought to be required for plant cell growth. In this work, we cloned a dinoflagellate cellulase gene, dCel1, whose activities increased significantly in G2/M phase, in agreement with the significant drop of cellulose content reported previously. Cellulase inhibitors not only caused a delay in cell cycle progression at both the G1 and G...

متن کامل

P-96: Appositional Expressions of Cyclin D1 and E2F1 Gene Machineries in Mycooestrogen Zeralenone-Induced Apoptosis in Testicular Tissue of Rats

Background: Zearalenone (ZEA) is known as a nonsteroidal oestrogenic mycotoxin produced by different species of Fusarium fungi. ZEA is known for its competitive effects with the natural 17-β estradiol to bind with the specific binding sites of the estrogen receptors (Ers). On the other hand, the cyclin family (especially cyclin D1) and E2F1 genes are the checkpoint genes involved in cell cycle....

متن کامل

Inhibition of Cyclin-dependent Kinase (CDK) Decreased Survival of NB4 Leukemic Cells: Proposing a p53-Independent Sensitivity of Leukemic Cells to Multi-CDKs Inhibitor AT7519

An unbounded number of events exist beneath the intricacy of each particular hematologic malignancy, prompting the tumor cells into an unrestrained proliferation and invasion. Aberrant expression of cyclin-dependent kinases (CDKs) is one of these events which disrupts regulation of cell cycle and subsequently, results in cancer progression. In this study, we surveyed the repressive impact of mu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017